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Severe acute respiratory distress syndrome
coronavirus 2 (SARS-CoV-2) has infected
over 650 million people and claimed the lives
of nearly 7 million since the start of the
pandemic. While SARS-CoV-2 is becoming
endemic with several preventative therapies,
an effective treatment against severe disease
remains unavailable. Immunocompromised
patients remain vulnerable given the limited
efficacy of vaccinations and are at risk of
respiratory failure, organ failure, and septic
shock if infected.1 The development of ther-
apeutics to combat the progression and
severity of SARS-CoV-2 infection presents
an opportunity to explore innovative ap-
proaches to treating viral diseases. Novel
therapeutic strategies aim to target the host
response to hyper-inflammation and prevent
the cytokine storm that is often associated
with severe COVID-19 cases.2

In recent years, researchers have focused on
intracellular secreted factors, such as extra-
cellular vesicles (EVs), to improve and build
upon the knowledge gained from cell-based
research and spearhead the use as potential
therapeutic agents for various diseases,
including SARS-CoV-2. EVs are small mem-
branous structures secreted by the cell mem-
brane or the cell’s internal recycling path-
ways and have emerged as a promising
therapeutic strategy due to their involvement
in a range of biological processes, including
cell signaling, immune response, and disease
progression. The objective of this analysis is
to examine the potential efficacy of EV-based
therapies in the treatment of SARS-CoV-2
severity, with a particular emphasis on their
common mechanisms and suitability for
future therapeutic use in human patients.
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Severe SARS-CoV-2 acts via direct and indi-
rect pathways to cause local and systemic
injury. In the direct pathway, severe SARS-
CoV-2 utilizes its spike protein to bind to
angiotensin-converting enzyme 2 (ACE-2),
allowing entry into cells. Cells in the naso-
pharyngeal tract and lungs are most prone
to damage by SARS-CoV-2 due to higher
cell surface expression of the ACE-2 recep-
tor.3,4 After direct cellular entry, SARS-
CoV-2 replicates using host machinery, and
viral-mediated damage results in the secre-
tion of pro-inflammatory cytokine inter-
leukin-6 (IL-6).5 Clinically, this presents
with anosmia and ageusia with rapid pro-
gression to dyspnea and respiratory failure,
ultimately resulting in multi-organ damage.6

The virus also acts via an indirect pathway to
induce systemic injury. SARS-CoV-2-infected
cells can undergo pyroptosis, which leads to
the release of damage-associated molecular
patterns (DAMPs) and pathogen-associated
molecular patterns (PAMPs).7 This mobilizes
antigen-presenting cells (APCs)—including
dendritic cells and pulmonary macro-
phages—that recognize PAMPs and DAMPs
and release pro-inflammatory cytokines and
chemokines, including interferon (IFN)-g,
IL-6, IP-10, and IL-1b. IL-1b further drives
the activation of pro-inflammatory pathways,
resulting in the recruitment of neutrophils
and cytotoxic T cells and the upregulation of
cytokines—mainly IL-6. Hypoxia induced by
SARS-CoV-2 triggers further IL-6 secretion.8

IL-6 also modulates its own expression by
upregulating the production of IL-10 (anti-
inflammatory). However, in the presence of
SARS-CoV-2, there is significantly greater
IL-6 production, resulting in a net pro-in-
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flammatory state. Dysregulation of the innate
immune response leads to increased inflam-
mation and end-organ damage.9,10

One promising treatment modality for se-
vere SARS-CoV-2 infection is EVs. EVs can
secrete proteins and anti-inflammatory mol-
ecules that can modulate the host immune
response. Additionally, EVs may act as a
negative regulatory element in the transmis-
sion of viral infection.11 Given these proper-
ties, EVs act at multiple points within the
direct and indirect pathways to inhibit the
inflammatory cascade (Figure 1). EVs can
inhibit viral replication and thereby decrease
direct viral injury.12 Their ability to block
IL-6, IL-6 precursors (IL-1b), and inflamma-
tory cytokines (tumor necrosis factor a

[TNF-a], IL-8, and MIP-2) at multiple
points within the pathway13,14 while upregu-
lating IL-10 results in downregulation of
cytokine production and reduction in sys-
temic injury.

Given their ability to act on multiple path-
ways, EVs can provide a more comprehensive
and effective approach to treating complex
diseases.15 To highlight the therapeutic prop-
erties of EVs, we conducted a review of 9
studies reporting the effects of EV therapy
on lung injurymodels (Table 1). The reported
outcomes of the reviewed EV therapies in
experimental models (Table 1) indicate lung
injury recovery, improved respiratory func-
tion, and overall survival. This was achieved
by (1) reducing pro-inflammatory cytokines,
(2) enhancing anti-inflammatory cytokines,
(3) decreasing neutrophil infiltration, and
(4) increasing macrophage polarization to
the anti-inflammatory M2 phenotype. EV
administration also resulted in downregula-
tion of IL-1b, TNF-a, IL-6,16–18 MIP-1,18,19

MIP-2, and CXCL2,18,20 in addition to upre-
gulation of IL-10.16,21,22 Moreover, EVs
Therapy.
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Figure 1. Mechanistic efficacy of extracellular vesicles against severe SARS-CoV-2 infection

SARS-CoV-2 acts through the direct and indirect pathway to induce systemic inflammatory injury. Extracellular vesicles secrete proteins and anti-inflammatory molecules to

effectively block inflammatory mediators and pathways at multiple points along the pathways, resulting in downregulation of inflammation, cytokine release, and systemic

damage.
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reportedly preserved alveolar structure,19

reduced alveolar wall thickness,18,21,23 and in-
hibited virus-induced apoptosis in lung
epithelial cells.22 Finally, the ability of mesen-
chymal stem cell (MSC)-EVs to transfer
cargo, such as miR-27a-3p, increased M2
macrophage polarization, effectively reducing
TNF-a17 and inhibiting lung fibrosis.24

The translation of EV-based therapies from
acute lung injury models to human clinical
studies have significant potential for the treat-
ment of SARS-CoV-2-induced acute respira-
tory distress syndrome (ARDs). Preclinical
models of lung injury have shown upregu-
lated inflammatory responses and migration
of neutrophils and macrophages to pulmo-
nary tissues (Table 1). This was verified path-
ologically and shown to be due to an upregu-
lation of IL-6. In preclinical models, EVs have
demonstrated an ability to dampen inflam-
mation and reduce T cell proliferation caused
by SARS-CoV-2, establishing the rationale for
present clinical trials.25 Several EV-based
therapies have entered clinical trials with the
aim of assessing safety, efficacy, administra-
tion route, and optimal dosing in various
respiratory conditions. A complete list of
ongoing clinical trials on the use of EV-based
therapeutics in COVID-19 treatment is
shown in Table 2. Due to the rapid spread
of COVID-19 and lack of effective therapies,
several studies were approved on an emer-
gency basis by ethical committees. In a
study where amniotic fluid-derived EVs
were administered to high-risk patients with
Molec
mild-to-moderate COVID-19, results showed
a significant decrease in CRP, IL-6, and
TNF-a, as well as stabilized absolute lympho-
cyte count (ALC).26 Additional clinical testing
performed on three severely ill patients with
COVID-19 revealed a decrease in inflamma-
tory biomarkers and improvements in patient
clinical status and respiratory function.27

Both studies were completed without any
adverse events or safety concerns.

The ongoing COVID-19 pandemic caused
by SARS-CoV-2 highlights the critical need
for effective therapies to mitigate disease
progression and reduce severity. EV-based
therapeutics have shown the capacity to
attenuate the hyper-inflammatory response
caused by SARS-CoV-2 and promote repair
ular Therapy Vol. 31 No 5 May 2023 1197
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Table 1. Articles reporting the effects of EV therapy on lung injury models

Source of EVs Model Sample
EV effects on cytokines and
inflammatory molecules Pathological outcomes Source

Adipose MSCs
sepsis-induced ALI:
in vivo mouse

lung tissueblood
YIL-6, YTNF-⍺, YIL-1b, [EBI3-
protein, [P28-proteinYIL-27

reduction in pulmonary
inflammation and lung tissue
injury (Ymacrophage
infiltration), increased
survival rate

Wang et al.16

Amniotic fluid BPD: in vivo rat lung tissue
YIL-1⍺, YIL-1b, YMCP-1,
YMIP-1⍺

significant decrease of
pulmonary hypertension,
preservation of alveolar
structure, reduction in vascular
remodeling, suppression of lung
inflammation, reduction of
macrophage infiltration

Bellio et al.19

Adipose MSCs
ALI: in vivo mouseALI:
in vitro mouse

lung tissueBALBMDMs

YTNF-⍺, YIL-1b, YIL-6, [IL-10,
YiNOS, YNF-kBYTNF-⍺,
YIL-1b, YiNOS, [ YM-1,
[MRC-1, [mi-27-a-3p

reduction of pulmonary
endothelial barrier,
inflammation (Y pro-
inflammatory cytokines, [ anti-
inflammatory cytokines, Y
neutrophils), and alveolar septal
thickening

Wang et al.17

Adipose MSCs
ALI: in vivo mouseALI:
in vitro mouse

lung tissueBALBMDMs
YIL-1b, [IL-10YIL-6, [YIL-1b,
YTNF-⍺, YiNOS, [TGF-b1,
[YM-1

reduction in inflammation
(Y neutrophils, Ymacrophage
recruitment) and alveolar wall
thickness

Huang et al.21

Bone marrow MSCs
ALI: in vivo mouseALI:
in vitro mouse

BALRAW267.4
YMIP-2, YTNF-⍺,
[LTB4YMRP1-protein,
[miR-145

antimicrobial effect
([ monocyte phagocytosis,
Ybacterial levels), reduction of
inflammation (Yleukocytes,
Yneutrophils)

Hao et al.20

Umbilical cord
jelly MSCs

influenza-induced ALI:
in vitro human

AEC no particular mechanism studied
restoration of alveolar fluid
clearance, reduction alveolar
protein permeability

29

Umbilical cord EPC
(rich in miR-126)

ALI: in vivo mouseALI:
in vitro human

lung tissueBALAEC

YTNF-⍺, YIL-1b, YIL-6, YIFN-g,
YMIP-1YMIP-2, YMIG, YIP-10,
YMPO[Claudin1, [Claudin4,
[Occludin

reduction of inflammation
(Y pro-inflammatory cytokines,
[ anti-inflammatory cytokines,
Y neutrophils), alveolar wall
thickness, and hyaline
membrane formation

Zhou et al.18

Whole blood fibrosis: in vivo mouse lung tissue Yhydroxyproline

reduction of immune cell
recruitment, alveolar wall
thickness, and collagen
deposition

Sun et al.23

Bone marrow MSCs

influenza-induced ALI:
in vivo piginfluenza-
induced ALI: in vitro
pigs

lung tissueLECs
YTNF-⍺, YCXCL10, [IL-
10Yapoptosis

inhibition of viral replication,
reduction of inflammation,
decrease in virus-induced lung
lesions, inhibited virus-induced
apoptosis in lung epithelial cells

Khatri et al.22

AECs, alveolar epithelial cells; ALI, acute lung injury; BAL, bronchioalveolar lavage; BMDMs, bone marrow-derived macrophages; BPD, bronchopulmonary dysplasia; CXCL, chemo-
kine (C-X-C motif) ligand; EPC, endothelial progenitor cell; EVs, extracellular vesicles; IFN, interferon; IL, interleukin; LECs, lymphatic endothelial cells; LTB4, leukotriene B4; MCP,
monocyte chemotactic protein; MIG, monokine induced by gamma interferon; MIP, macrophage induced protein; MIR, microRNA; MPO, myeloperoxidase; MRC-1, mannose re-
ceptor C-type 1; MRP1, multidrug resistance associated protein 1; MSC, mesenchymal stem/stromal cell; NF-kB, nuclear factor kappa-light-chain-enhancer of activated B cells; NOS,
nitric oxide synthase (iNOS, inducible; eNOS, endothelial); RAW267.4, monocyte/macrophage lineage; TGF, transforming growth factor; TNF, tumor necrosis factor; YM-1, Chitinase
3-like 3, a macrophage protein.
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of damaged lung tissue in preclinical models,
with similar results when translated into
SARS-CoV-2 patients. In addition, EVs
may harbor therapeutic applications to
tackle the prolonged symptoms of infection
1198 Molecular Therapy Vol. 31 No 5 May 20
(long COVID) that are associated with pro-
longed overactivation and exhaustion of im-
mune cells.28 The overview presented in this
work highlights the innovative use of EVs as
a promising approach to address severe
23
SARS-CoV-2 infections. Recent progress in
clinical trials has also laid the groundwork
for the development of effective EV-based
therapies for a broad range of viral
infections.
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Table 2. List of clinical trials on the use of EV-based therapeutics in COVID-19 management

Referencea Official title Status

NCT04493242 Extracellular Vesicle Infusion Treatment for COVID-19 Associated ARDS (EXIT-COVID19) completed

NCT05787288 A Clinical Study on Safety and Effectiveness of Mesenchymal Stem Cell Exosomes for the Treatment of COVID-19 recruiting

NCT04657458 Expanded Access for Use of bmMSC-Derived Extracellular Vesicles in Patients With COVID-19 Associated ARDS available

NCT05116761 ExoFlo� Infusion for Post-Acute COVID-19 and Chronic Post-COVID-19 Syndrome not yet recruiting

NCT05354141
Bone Marrow Mesenchymal Stem Cell Derived EVs for COVID-19 Moderate-to-Severe Acute Respiratory Distress Syndrome
(ARDS): A Phase III Clinical Trial

recruiting

NCT05228899 Zofin to Treat COVID-19 Long Haulers recruiting

NCT04902183 Safety and Efficacy of Exosomes Overexpressing CD24 in Two Doses for Patients With Moderate or Severe COVID-19 recruiting

NCT05216562
Efficacy and Safety of EXOSOME-MSC Therapy to Reduce Hyper-inflammation In Moderate COVID-19 Patients (EXOMSC-
COV19)

recruiting

NCT04798716
The Use of Exosomes for the Treatment of Acute Respiratory Distress Syndrome or Novel Coronavirus Pneumonia Caused by
COVID-19 (ARDOXSO)

not yet recruiting

NCT05387278
Safety and Effectiveness of Placental Derived Exosomes and Umbilical Cord Mesenchymal Stem Cells in Moderate to Severe
Acute Respiratory Distress Syndrome (ARDS) Associated With the Novel Corona Virus Infection (COVID-19)

recruiting

NCT04491240 Evaluation of Safety and Efficiency of Method of Exosome Inhalation in SARS-CoV-2 Associated Pneumonia. (COVID-19EXO) completed

NCT04384445 Zofin (Organicell Flow) for Patients With COVID-19 active, not recruiting

NCT04657406 Expanded Access to Zofin for Patients With COVID-19 available

aObtained from clinicaltrials.gov using “extracellular vesicles” or “exosomes” as search strings, with results restricted to COVID-19.
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